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All of chemistry is the result of inter- and intramo- 
lecular forces. The forces between the constituent 
atoms in a molecule determine its structure and sta- 
bility. The forces between like molecules determine 
the properties of materials. Given this importance, 
one might expect, or a t  least hope, that  intermolecu- 
lar forces are easily obtainable. They are not. There 
are only a few simple systems for which the intermo- 
lecular forces are known accurately over a wide range 
of distances. We review here one of several methods 
for measuring intermolecular potentials, that  of mea- 
suring high-energy (4 eV-4 keV) total cross sections 
using molecular beams. The results are applicable in 
the estimation of nonbonding interactions in mole- 
cules, in the construction of potential-energy surfaces 
for reactions, and in a number of spectroscopic appli- 
cations. 

Intermolecular forces are a construct of the Born- 
Oppenheimer (BO) appr0ximation.l The full Schro- 
dinger equation involves a Hamiltonian and wave 
functions which depend on the position of all N nu- 
clei and all n electrons in the system. The only poten- 
tials are the coulomb attractions and repulsions. The 
BO approximation makes use of the fact that  nuclei 
are much heavier than electrons, and therefore move 
more slowly. The prescription is to freeze the posi- 
tions of all the nuclei and then to compute the al- 
lowed energies and wave functions for the electrons. 
Each allowed energy is a function of the 3N nuclear 
coordinates and is one of the potential-energy curves 
or hypersurfaces for the system. Except for very 
high-energy scattering (many keV), deviations from 
the BO approximation occur almost exclusively 
where two surfaces cross each other or pass close to 
each other as in an avoided crossing. These devia- 
tions are usually best treated as a perturbation on the 
BO approximation. 

After solving the electronic problem to get the po- 
tential energy surfaces (usually a difficult or impossi- 
ble calculation), one must solve for the nuclear mo- 
tion using the potential-energy surface as the poten- 
tial in Schrodinger’s equation or in Hamilton’s or 
Lagrange’s equations in classical mechanics. The 
bound states in this calculation, if any, are the vibra- 
tional and rotational states of the molecule. The 
shape of the surface near a minimum determines the 
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structure of the molecule and the spacing of its vibra- 
tional energy levels. The energy distances between 
the minimum and the various asymptotes give the 
various dissociation energies. For a reactive system 
there is usually an energy barrier between the reac- 
tants and products. The height of this barrier is relat- 
ed to the activation energy. The location of the bar- 
rier determines other properties of the reaction, such 
as energy disposal.2 

There are many quantum mechanical methods of 
varying accuracy, dependability, and cost for solving 
Schrodinger’s equation numerically for the electronic 
motion to obtain potential-energy  surface^.^^^ In 
many cases there may be no experimental method 
available, so that even a very crude theoretical calcu- 
lation may be the best available. Experimentally, one 
measures either the energy levels or the scattering for 
the system, and from that information one obtains 
the potential energy surfaces of interest. If a system 
has many bound states, spectroscopy is the method 
of choice. Vibrational and rotational energy levels in 
gas-phase electronic spectra give much information 
on both the ground- and excited-state surfaces which, 
in some cases, is sufficient to obtain extremely accu- 
rate potential energy curves. If there are few or no 
bound states, some form of scattering measurement 
is usually preferable. 

The older forms of scattering experiments were the 
accurate measurement of transport properties5 (vis- 
cosity, thermal conductivity, diffusion, etc.). Each of 
the measured coefficients is an average of the differ- 
ential scattering cross section over scattering angle 
and incident energy. Recently, the use of molecular 
beams has made it possible to measure the differen- 
tial cross section directly.6 The experiments are gen- 
erally more difficult, but the results are cleaner and 
more easily interpreted. There are basically two types 
of beam experiments, differential and total. In the 
differential method two molecular beams intersect, 
usually a t  right angles. At the intersection the mole- 
cules may scatter or react chemically, and the prod- 
ucts recoil away from the intersection region with 
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Figure 1. Schematic diagram of the Yale apparatus: (1) alkali 
oven, (2) heated tungsten plug, (3) ion lens, (4) liquid-nitrogen- 
cooled cold traps, ( 5 )  crossed, neutralizing beam, (6) collimating 
slits, (7) charged ion deflection plates, (8) scattering chamber, (9) 
detector (tungsten filament), (10) simple collector plate, (11) elec- 
tron multiplier. 

some distribution in scattering angle relative to the 
directions of the incident beams; this is the differen- 
tial cross section 1(8,p). By rotating a detector about 
the intersection (or, equivalently, by rotating the 
sources), one can measure 1. By careful control of the 
distributions of beam velocities and of angular 
spreads in the beams one can resolve a series of quan- 
tum mechanical interferences which, when analyzed, 
yield very accurate potential-energy curves for atom- 
atom elastic scattering. 

The measurement of total cross sections is simpler. 
A beam is passed through a scattering chamber, filled 
with the desired gas, and then detected. The signal a t  
the detector is given by an equation analogous to 
Beer's law 

F = Fo exp(-nlQ) (1) 
where Fo is the intensity when there is no gas in the 
chamber, n is the number density (concentration) of 
the scattering gas (molecules/cm3), 1 is the length of 
the chamber, and Q is the total cross section. Q has 
units of area and may be thought of as an effective 
target area. Q is related to the differential cross sec- 
tion by 

Q = JOT sin 0 d 0 Jo2"I(0,p)dp (2) 

Where both methods are applicable, the differential 
method is preferred because it gives more detailed in- 
formation, leading to a more accurate potential. 
Since the total cross section requires only the detec- 
tion of the beam and not the detection of scattered 
molecules, it can be used where the beam intensities 
are too low for a differential measurement. 

In classical mechanics the center of mass7 (CM) 
scattering angle 0, the angle between the initial and 
final relative velocities, is given6 by a simple integral 
involving the potential V ( r ) ,  the relative translation- 
al energy E, and the impact parameter b (the dis- 
tance of closest approach between the two atoms if 
there were no interaction). The classical CM differ- 
ential cross section is given by8 

(3) 
Quantum mechanics rounds out the singularities a t  
the rainbow angle where a8/ab = 0 and a t  6 = 0 ( b  = 
m) and also provides two types of oscillations a t  small 

I ( 0 )  = bl sin 0 aO/abl-1 

(7) The center of mass (CM) coordinate system has its origin at the cen- 
ter of mass of the two colliding molecules. By conservation of momentum, 
the LAB velocity of the center of mass does not change. In the CM system 
the motion of the two molecules can be treated as the motion of a single par- 
ticle of effective mass 1 = mImz/(ml + mz). 

( 8 )  R B. Bernstein, Ado Chem Phys,  10,75 (1966) 

angles which result from the interference of the scat- 
tering from the three impact parameters which con- 
tribute to the same 8. As indicated, 8 is determined 
by an integral over V ( r ) ;  however, the integrand is 
largest near rm, the distance of the closest approach, 
which means that the scattering a t  angle 0 is most 
sensitive to V(rm(8,E)). Not surprisingly, scattering 
a t  larger angles and higher energies is sensitive to 
smaller r (larger V )  than scattering a t  smaller E and 
8. Thermal-energy cross sections, both differential 
and total, are most sensitive to the attractive part of 
the potential. I t  is difficult to get thermal differential 
cross sections in the large-angle region influenced by 
the repulsive wall of the potential, and, of course, it is 
impossible via classical mechanics to obtain the po- 
tential above the initial relative kinetic energy. 

Experimental Techniques 
Since chemical bond energies fall well above kT i t  

is important to measure the repulsive part of the po- 
tential up to a few electron volts. Data in this region 
are important in such things as constructing poten- 
tial-energy surfaces for reactions and in estimating 
nonbonded repulsions in molecules. Unfortunately, 
beams in this energy range are difficult or impossible 
to form. A way out of this dilemma was found by the 
late Professor I. Amdur a t  M.I.T.g He made neutral 
beams a t  much higher energies by charge exchange of 
ions and used these beams to measure total cross sec- 
tions. Since the total cross section is sensitive to the 
scattering a t  very small angles (minutes of arc), the 
potential required to effect this scattering is much 
smaller than the beam energy. Thus a potassium 
atom a t  1 keV may be deflected by an angle of 5' by a 
potential of only -0.5 eV. Total cross sections are not 
difficult to measure, and, since only small-angle scat- 
tering is important, the theory simplifies appreciably. 
Since Amdur's original measurements, several 
groups, including the author's group a t  Yale, have 
made similar measurements for both ions and atoms. 

Figure 1 shows a schematic of the apparatus a t  
Yale,lo designed to accelerate alkali metals; other ap- 
paratuses have a similar design. Alkali vapor is 
formed in an oven (1) and is ionized in a heated plug 
of porous tungsten (2). This surface ionization takes 
place because the ionization potential of the alkali 
metals is less than the work function of tungsten: the 
tungsten simply grabs the outer electron and leaves a 
thermal ion. The process is about 100% efficient for 
K, Rb, or Cs. The ions are accelerated and focused by 
an ion lens system (3), a stack of plates with holes in 
them. After getting the ions to the desired energy 
they are neutralized by resonant charge exchange in a 
crossed neutral beam of the same alkali metal ( 5 ) .  
When the ion and neutral collide, the outer electron 
of the atom is naturally attracted to the positive ion 
and may jump from one nucleus to the other. Such 
processes take place a t  large impact parameters with 
little change in momentum of the nuclei. Conserva- 
tion of energy and momentum dictate that neutrals 
traveling in the direction of the ion beam must have 
very nearly the same kinetic energy as the ions. Hav- 

(9) I. Amdur and J. E. Jordan, Ado. Chem. Phys., 10,29 (1966). This is a 
review of earlier work. 

(10) C. J. Malerich and R. J. Cross, J .  Chem. Phys., 52,386 (1970). 
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ing produced a high-energy neutral beam, one can 
then use i t  for scattering. The beam is passed 
through a scattering chamber 1 in. long (8) and is fi- 
nally detected by surface ionization. The beam 
strikes a fine tungsten wire (9) (0.005 in. in diameter) 
where it is ionized. The ions are accelerated into the 
cathode of an electron multiplier (11) which am- 
plifies the beam intensity by -lo6. Further amplifi- 
cation is achieved by an electrometer. 

Gas is admitted to the scattering chamber (8) from 
a leak valve to maintain a steady pressure from 0 to 
10 p ,  enough to attenuate the beam to about 50%. 
The absolute pressure is measured by a Baritron ca- 
pacitance manometer which measures the deflection 
of a thin nickel foil separating two chambers, one 
connected to the scattering chamber and the other a t  
a high vacuum. The procedure is to keep the beam a t  
one energy and measure the beam intensity as the 
pressure in the scattering chamber is varied. Using a 
least-squares fit to (l), the cross section is obtained. 
This procedure is repeated a t  many energies to get 
&(E) .  The upper energy limit is determined by 
breakdown voltages of insulators. I t  can be as high as 
50 keV; in the Yale apparatus it is 1 keV. A t  energies 
of several keV the results may no longer be deter- 
mined by a single potential-energy surface. The lower 
energy limit is determined by the space-charge blow- 
up of the ion beam. In the Yale apparatus, when ev- 
erything is working, and, when all gods and spirits 
have been properly propitiated, a beam energy of 4 
eV can be achieved. 

The configurations of other machines measuring 
high-energy total cross sections are ~ i m i l a r . ~  The 
chief differences are in the sourcesll and detectors.12 
For alkali ion scattering the same source can be used 
except that  the ions are not neutralized. The detector 
consists of an electron multiplier preceded by a de- 
fining slit. Nonalkalis cannot be ionized by surface 
ionization (or else the efficiency is low). Ions are 
made by electron bombardment of the neutral gas. 
Neutralization of the ions is usually done in a cham- 
ber rather than a crossed beam. Detection is usually 
accomplished by a bolometer, which responds to the 
energy released when the beam collides with it, or an 
Auger detector, a surface of low work function (such 
as the cathode of an electron multiplier) which ejects 
electrons when struck by a high-energy atom. Be- 
cause the efficiency of formation and detection is less 
than in the case of alkali atoms, the lowest accessible 
energy is generally -50 eV. 

Interpretation of Results 
The actual cross sections measured by the proce- 

dure described above are not the true quantum me- 
chanical cross sections given by ( 2 ) .  Even a t  thermal 
energy most of the scattering occurs a t  very small an- 
gles such that the scattered molecules may still be 
detected. Note that (3) gives a nonintegrable singu- 
larity in the differential cross section a t  8 = 0. This is 
rounded out by quantum mechanics to a finite differ- 

(11) R K B. Helbing and E. W. Rothe, Reu SCL Instrum, 39, 1948 
(1968). 

(12) M. Cavallini, G. Gallinaro, and G. Scoles, 2 Nuturfoorsch, Ted A,  22, 
413 (1967); F J. Van Itallie, L J. Doemeny, and R. M. Martin, J. Chem. 
Phys , 56,3689 (1972); Y. T. Lee, J. D. McDonald, P. R. LeBreton, and D. R. 
Herschbach, Reu SCL Instr , 40,1402 (1969). 

entia1 cross section a t  8 = 0, since it is impossible to 
distinguish between scattering a t  very small angles 
and the broadening of a beam due to the Heisenberg 
uncertainty in the position and momentum perpen- 
dicular to the beam. The fraction of very small-angle 
scattering increases a t  high energies so that the ex- 
perimental cross section, Qexp, may be less than Q by 
a factor of 4. What is actually measured is 

Q e r p ( E )  27rJ”i3”1(B,E)G(B) sin 8 dB (4) 
where G ( 8 )  is the apparatus efficiency function, the 
probability that, if a beam molecule is scattered by 
the CM angle 8, it will be detected as scattered. At 
small 8, G ( 8 )  = 0, which makes Qexp less than Q. E ( 8 )  is 
a complicated but easily determined function of ap- 
paratus geometry. I t  was first derived by Kusch.13 
The resolution angle of the apparatus 8~ is given by 
E ( ~ R )  = 0.5; OR is approximately dlL where L is the 
distance between the center of the scattering cham- 
ber and the detector and d is the half-width of the 
beam or detector, whichever is greater. There are two 
common apparatus geometries: rectangular slit and 
circular. It is easier to align and construct an appara- 
tus with slit geometry, but the resolution function is 
more complicated. The Yale apparatus has slit geom- 
etry with a resolution of 5.5‘. The record is held by 
Wharton’s group a t  Chicago who have measured 
thermal cross sections with a circular geometry a t  11” 
res01ution.l~ They could detect the falling of the 
beam due to gravity. 

The procedure for fitting an experimental cross 
section curve is simply to pick a likely potential, 
then, using (3) and (4), to calculate the corresponding 
cross section. The potential is then varied until a sat- 
isfactory fit is achieved. The procedure is much less 
cumbersome than might be apparent. For reasons 
discussed below, it is not difficult to make a good ini- 
tial guess. The procedure can be simplified somewhat 
in the present case of small angle scattering.1° At low 
energies (a few electron volts) quantum mechanical 
effects contribute a few percent. These can easily be 
included by using a semiclassical method due to Mil- 
ler.15 Including quantal effects, i t  takes only a, few 
minutes of computer time on an IBM 7094 computer 
to obtain cross sections a t  50 energies for an arbitrary 
potential. 

Figure 2 shows a calculated cross section for the 
Lennard-Jones (6,9) potential 

V ( r )  = c[2(rm/r)9 - 3(rm/r)6] ( 5 )  

t is the well depth, and rm is the position of the mini- 
mum. The energy range is much larger than any ex- 
periments. Figure 2 also gives the curve of b ( E ) ,  the 
impact parameters which determine the cross section. 
If quantum mechanical effects are neglected, the in- 
verse-power potential V = C r s  gives a cross section 
Q cc Em2IS. The cross sections for each of the terms in 
( 5 )  taken separately are shown in Figure 2. A t  high 
energies, the cross section is determined by collisions 
with small impact parameters which are governed 
chiefly by the repulsive wall. A t  low energies the 
cross section is determined by three impact parame- 

(13) P. Kusch, J.  Chem. Phys., 4 0 , l  (1964). 
(14) E. Richman and L. Wharton, J .  Chem Phys., 53,945 (1970). 
(15) W. H. Miller, J.  Chem. Phys., 48,464 (1968). 
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Figure 2. The top curve is Qexp(E)  for a Lennard-Jones (6,9) po- 
tential with c = 9.1 X eV, r ,  = 4.84 8, and & ( B )  for the Yale 
apparatus.1° The two lines give the cross sections for the limiting 
inverse sixth- and ninth-power potentials. The lower curve gives 
the impact parameters corresponding to 0 = f 0 ~  while the cross- 
hatched area covers the range of b for 0.1 5 ~ ( 0 )  5 0.9. 

ters, but chiefly by the outermost one. At low ener- 
gies the scattering is dominated by the long-range at- 
tractive branch of the potential. Note that the cross 
section approaches the limiting high-energy value 
from below. This is because the actual potential is 
less than the limiting repulsive potential. That the 
approach is so slow is a result of the nearly equal 
range of the two terms in (5). Q rises sharply when 
the rainbow angle approaches the resolution angle. 
Here, the classical differential cross section (3) has an 
integrable singularity (ab/aO = a). The undulations 
a t  low energies are the result of a quantum mechani- 
cal interference between the small-angle scattering a t  
large b and the "glory" scattering at  smaller impact 
parameters where the attractive and repulsive forces 
are nearly balanced.8 There are two rough scaling 
laws.1° For a given potential form, Q is approximate- 
ly proportional to rm2, and the energy scales approxi- 
mately as (EORIE). Thus heavier systems with larger E 

have the transition between attraction and repulsion 
a t  larger energies. Poorer resolution is equivalent to 
higher energies which, in turn, sample the potential 
a t  smaller r.  

In deriving a potential from an experimental cross 
section, one must specify what region of the potential 
is probed. Qexp is obviously not sensitive to scattering 
a t  small angles where 8(0) = 0. Qexp is affected by, 
but not sensitive to, large-angle scattering where & (8) 
0 1. A change in V(r)  at  small r may cause scattering 
a t  50' instead of 30°, but will not affect Qexp. The 
cross section is determined mainly by scattering a t  
angles for which &(e)  0 0.5. As discussed above, this 
scattering arises chiefly from the potential region 
near rm = b. For the same reasons, Qexp is not af- 
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Figure-3. Experimental cross sections for K + Ne, Ar, Kr, Xe. The 
straight lines give the 'limiting inverse-power potentials. The 
curves for K + Kr and K + Xe are the cross sections corresponding 
t o  e q  6. See Table I1 for the potential parameters. 

fected by electronically inelastic scattering except 
where it leads to scattering near 8 ~ .  

Results 
Space does not allow a thorough discussion of all of 

the many systems studied to date. Table I gives a list 
of systems and literature references. These have been 
confined to measurements of total cross sections in 
the energy range of 4 eV-4 keV, with some other per- 
tinent results added. Experiments at  higher energies 
involve two or more potential energy curves and elec- 
tronic excitation. Thermal-energy studies are another 
large topic in themselves. Recent reviews of these are 
available.6 

Alkali metal-rare gas systems have been studied 
over a wider energy range than other systems because 
of the ease of ionization by surface ionization. Figure 
3 shows the cross sections for K + Ne, Ar, Kr,  and Xe 
from 4 eV to 1000 eV taken on the Yale apparatus. 
Ne and Ar show only a straight line caused by the re- 
pulsive part of the potential. Kr and Xe show the rise 
caused by the attractive part of the potential as well. 
In all four cases, as well as in several other alkali 
metal systems, the repulsive part of the potential can 
be f i t  by an inverse-power potential, V = The 
cross sections cannot be fit using an exponential po- 
tential, V = Ce-"". The slope of the high-energy 
cross section directly gives s. Values are in Table 11. 
As is readily apparent, the potentials are soft (small 
s )  in contrast to the popular inverse 12th power po- 
tential. This is entirely reasonable given the soft, 
"squishy" outer s electron on the alkali atom. Anoth- 
er feature is that s depends strongly on the system, 
varying from 6.0 for Na-Ar to 10.75 for Cs-Xe. This 
flatly contradicts the law of corresponding  state^,^ 
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Table I 
Systems Studied by High-Energy Elastic Scattering 

S y s t e m s  Ref 

Alkal i  Atom-Rare G a s  
Na + A r ,  Xe;  K + Ne, A r ,  Kr, Xe; C s  + Kr,  Xe 
C s  + He, Ne, A r  
Na + Xe; K + A r ,  Kr ,  Xe; C s  + A r ,  Kr, Xe 

Li ,  Na, K, Rb, C s  + Hg 
Na + C s  

Alkal i  Atom-Miscellaneous 

K + CH,,C(CH~),,CC~,,CH$,SFG,N~, CH3N02 

R a r e  Gas-Rare G a s  
He, He 
A r  + H e , A r  
All p a i r s  except  Rn 

A r  + O,, H,, N,, CO; I-Ie + CH,, CF,, CH,F, 

He + H, 
H, 0, F + He, Ne, A r ,  Kr ,  X e  
H Xe 
He + H,. CH,, N,O, CO,; Ne + CO,; Ar + O,, 

N,O + He, Ne, Ar .  K r ,  Xe 
Hg + He, Ne, A r ,  Kr, Xe 

R a r e  Gas-Miscellaneous 

CH,F,, CHF, 

N, 

Miscel laneous Neut ra l  S y s t e m s  

10 
1 6  
17 

18  
19 
16  

9, 20-22 
9, 23 
24 

9 

25 
24 
26 
24 

27 
28 

CH, + CH,; CF, + CF,; CH,F + CH,F; CH,F,+ 9 

24 
24 
24 
24 

27 

CHZF2; CHF, + CHF, 
0 + H,, N,, 02, CO, NO, COz 
N + 02; Hz + H, 
N, + N,, 0 2 ,  CO, NO, COZ, NZO 
02 + 02, CO, NO 

CO, + CO2, N,, 0 2 ,  CO 
N2O + NZO, NZ 27 

Alkal i  Ion-Rare Gas  
K' + He, Ne, Ar, K r ,  Xe 
Li' + He, Ne, Ar, K r  
Li' + Hea 34" 
Li' + H e b  35b 
K' + HeC 36" 

29-32 
33 

Alkal i  Ion-Miscellaneous 
Li' + N,, 0," 34" 
Li', K', Cs' + H,, D, 37 

38 K* + 02, N,, CO, NO, CO2, N,O 

H' 4 He, Ne, Ar, Kr ,  XeQ 28,40" 
H' + N,, CO, COS, SF,, H,, CH," 40" 
He+ + He; H,' + A r ,  Kr' 40" 
C1- + He, Ne, A r ,  Kr ,  Xe 29 
Be2+ + H e b  41 

a These studies used differential scattering of ions at high ener 
gies. Done by an energy loss measurement. This experiment 
measured large-angle (0 = 180") scattering and therefore sampled 
the potential a t  large energies. 

Miscel laneous Ionic S y s t e m s  

(16) C. J. Malerich, Ph.D. Thesis, Yale University, 1971; C. J. Malerich, 

(17) M. Hollstein and H. Pauly, Z. Phys., 196,353 (1966); 201,lO (1967). 
(18) W. Neuman and H. Pauly, Phys. Lett., 22, 291 (1966); J. Chem. 

(19) W. Neuman and H. Pauly, Phys. Reu. Lett., 20,357 (1968). 
(20) J. E. Jordan and I. Amdur, J .  Chem. Phys., 46,.165 (1967). 
(21) W. J. Savola, E. T. Eriksen, and E. Pollack, Phys. Reu. [Sect.] A,  7, 

(22) P. B. Forman, P. K. Rol, and K. P. Coffin, J.  Chem. Phys., 61, 1658 

(23) S. 0. Colgate, J. E. Jordan, I. Amdur, and E. A. Mason, J .  Chem. 

K. B. Povodator, and R. J. Cross, unpublished results. 

Phys., 52,2548 (1970). 

932 (1973). 

(1974). 

which is that  a family of chemically similar systems 
should all have the same potential form, the systems 
differing only by the scaling factors t and rm. 

In the case of K-Kr and K-Xe we see a different 
behavior from that seen in Figure 2. In Figure 2 the 
cross section a t  high energies slowly approaches the 
limiting straight line from below. In Figure 3 we see a 
much more rapid approach from above. This means 
the potential must approach its limiting form rapid- 
ly. Simple addition of attractive and repulsive terms 
as in ( 5 )  does not work. There is no reason to expect 
that  i t  should. The long-range limit -Cr-6 is accu- 
rate only a t  large r (23rm). Higher order terms pro- 
portional to r-8, r-lo, etc. are also known. A more 
general and more realistic form is 

V ( r )  = c ,~-~[1  - J ( r ) ]  - Csr-V(r) (6) 

where J ( r )  is1 a joining function which goes from 0 a t  
small r to 1 a t  large r, thus switching between the at-  
tractive and repulsive terms smoothly and contin- 
uously. The form of J governs the position and rapid- 
ity of the switch. 

I t  should be obvious from Figure 3 that the data 
are neither sufficiently precise nor extensive to per- 
mit an accurate determination of J ( r ) .  Indeed, the 
dependence of Qexp on V(r) in this region is very non- 
linear, and thus several potentials might give equally 
good fits to Qexp(E). Fortunately, K-Kr has been ex- 
tensively studied a t  thermal energies so that the po- 
tential in the well region and beyond is well known. 
Duren, Raabe, and S ~ h l i e r ~ ~  obtained a potential giv- 
ing a good fit to all the thermal beam data (differen- 
tial and total). Their potential does not fit the high- 
energy cross sections, which is no surprise, since none 
of their measurements depend on the repulsive part 
of the potential. A f i t  to this potential gives the join- 
ing function 

J(r)  5 = exp[-a2/(r - a)2] (7 L a )  (7) 
J ( r )  = 0 ( r  5 a )  
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Table XI 
Potential Parameters and Ranges for Alkali Metal-Rare Gas Systems 

System index, s C,, eV As a ,  8. a ,  AQ I ' ,  A b  sampled ,  V, eVC 

Na + Arc  6.0 1 0 1  2 . 4 4 . 7  9.4 x 10%.53 
Na -c XeC 6.65 360 2.6-5.0 8 .1  x 10%.63 

3.0 x 10-3-0-0.49 K + NeC 5.75 59.3 2.3-5.6 
K + Arc  7.25 618 2.7-5.4 3.0 x 10-3-0.46 
K + Kr 8.0 ' 1900 3.22 1.15 2 . 9 4 . 8  -2.8 x 10m3-0.38 
K + Xe 8.5 6190 3.20 0.95 3.1-7.0 -3.0 x 10-3-0.41 

C s  T Xe 10.75 1.44 x 105 3.90 1.15 3.3-7.6 -3.7 x 10-'-0.38 

- 

Repulsive Coeffici$nt Potent ia l ,  Range 

C s  4- Kr  10.0 3.52 x l o 4  3.60 1.15 3 . 1 4 . 8  4 . 4  x 10-3-0.43 

a The parameters a and a pertain to the ioining function defined by (7). For K + Kr they were fit using the potential of Duren e t  al.42 For 
the other systems they were fit from the experimental data  using (6). The range in r is given by the range in b(BR,E) over the experimental 
energy range (see text). These systems were fit with a single power-law repulsive potential, V = C,9r-S,  and hence the range in Vis always 
positive. For the heavier systems the attractive terms were included, and the range in r a n d  Vincludes the attraction. In these heavier cases 
s and C, were fit by the limiting high-energy behavior of Q ( E ) .  

A slightly better fit is given by replacing C6r-6 by 
C 6 ( r  - A)-6. The potential gives a good fit to the 
data for 3 A I r I 7 A, using A = 0.75 .& and c6 = 
241.5 A;6 the other parameters are in Table 11. The 
well parameters are: t = 9.01 x 1 0 - 4  eV, rm = 7.84 A. 
The curve in Figure 3 shows the corresponding Qexp 
for K-Kr. Of the six parameters used in the fit, only 
two (s  and C,) were determined from the high-energy 
data; the rest were obtained by a fit to thermal data. 
Thus there are no adjustable parameters to fit the 
deviation from the limiting repulsive potential. The 
agreement with experiment is gratifying. The fit to 
K-Xe is done completely from the high-energy data 
using (6-7) with the parameters given in Table 11. 

Rare gas-rare gas potentials have been measured 
largely by the Amdur group a t  M.I.T.g and by Leonas 
et  al. a t  Moscow.24 Because i t  is more difficult to ion- 
ize a rare gas than an alkali metal, the data were 
taken a t  higher energies and do not include the at- 
tractive part of the potential. The potentials are 
smaller than the corresponding alkali rare gas poten- 
tials and are harder. Both of these trends are reason- 
able. The extra s orbital on the alkali atom makes it 
larger. The orbital contains a single electron, making 
it easily deformable. The most recent results on He- 
He22 agree well with theoretical  calculation^.^^-^^ 

A third group of systems that has been well studied 
are the alkali ion-rare gas systems. These have been 
studied at  high energies by Amdur and Jordan et  al. 
a t  M.I.T.,31 Los et  al. a t  Amsterdam,2g and Inoye and 
Kita a t  T o h o k ~ , ~ ~ , ~ ~  and a t  lower energies by Powers 
and Cross a t  Yale28 and by G i ~ l a s o n ~ ~  a t  UICC. The 
potentials at  higher energies resemble the corre- 
sponding rare gas-rare gas potentials except that  
they are somewhat smaller because the electrons are 
pulled closer to the nucleus by the greater nuclear 
charge on the alkali metal.4 At lower energies the po- 
tentials are quite different since, a t  large distances, 

the ion-molecule potential contains the powerful ion- 
induced-dipole attraction 

vi-id(r) = - e ~ ( 2 ~ 4 )  (8 )  

where CY is the polarizability of the atom. This term is 
much stronger than the van der Waals term and is, of 
course, absent in the atom-atom case. Low-energy 
data were fit to potentials of the form of (6-7) except 
that the attractive term was proportional to r-4. 

Recently, Gordon and Kim47 have developed a 
simple electron-gas model of the intermolecular po- 
tential for closed-shell systems. Their potentials for 
rare gas-rare gas systems and the high-energy part of 
the alkali ion-rare gas systems agree quite well with 
experiment. The agreement with low-energy alkali 
ion-rare gas potentials is poor. The disagreement is 
possibly the result of a poor choice of potential func- 
tion to fit the experimental data. The dependence of 
the cross section on the potential in the transition re- 
gion is highly nonlinear, and thus several potentials 
may fit the data. I t  is therefore not impossible that 
the Gordon-Kim potentials may fit the cross section 
of Powers and Cross.28 More accurate measurements 
are now being done by Gislas01-1,~~ so that this dis- 
crepancy may soon be resolved. 

Conclusion 
Our knowledge of intermolecular potentials is slim, 

but a t  least we have good knowledge of a few systems 
over wide ranges. With this we are able to construct 
reasonable guesses for others. Using various combin- 
ing rules and simple calculations we can construct 
guestimates of more complicated potential energy 
surfaces. Such surfaces are useful in every phase of 
chemistry from spectroscopy and kinetics to interac- 
tions in DNA and proteins. 
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